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Abstract: Interactions between excitatory and inhibitory neurons in the cerebral cortex give
rise to different regimes of activity and modulate brain oscillations. A prominent regime in
the cortex is the inhibition-stabilized network (ISN), defined by strong recurrent excitation
balanced by inhibition. While theoretical models have captured the response of brain
circuits in the ISN state, their connectivity is typically hard-wired, leaving unanswered
how a network may self-organize to an ISN state and dynamically switch between ISN
and non-ISN states to modulate oscillations. Here, we introduce a mean-rate model
of coupled Wilson-Cowan equations, link ISN and non-ISN states to Kolmogorov-Sinai
entropy, and demonstrate how homeostatic plasticity (HP) allows the network to express
both states depending on its level of tonic activity. This mechanism enables the model
to capture a broad range of experimental effects, including (i) a paradoxical decrease in
inhibitory activity, (ii) a phase offset between excitation and inhibition, and (iii) damped
gamma oscillations. Further, the model accounts for experimental work on asynchronous
quenching, where an external input suppresses intrinsic oscillations. Together, findings
show that oscillatory activity is modulated by the dynamical regime of the network under
the control of HP, thus advancing a framework that bridges neural dynamics, entropy,
oscillations, and synaptic plasticity.

Keywords: neural oscillations; Wilson-Cowan; inhibitory-stabilized network; homeostatic
plasticity; damped oscillations; asynchronous quenching

1. Introduction
In the mammalian brain, regions including the hippocampus and neocortex are com-

prised of interacting populations of excitatory and inhibitory neurons connected in a
reciprocal fashion [1]. In these circuits, the balance between excitation and inhibition is
key to controlling their dynamical regime of activity, ranging from stable firing rates [2] to
oscillations [3] and irregular fluctuations [4].

A key feature of brain circuits is their ability to modulate neural oscillations under
different states of activity. In awake cortical activity, oscillations force inhibitory interneu-
rons (I) to fire in-phase with excitatory (E) neurons [5]. However, under anesthesia and
other brain states, E and I populations exhibit out-of-phase activity, such that the phase
of E neurons precedes I neurons by several milliseconds [6,7]. This phase shift plays an
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important role in neural computation by regulating the flow of information across distinct
populations [8–10].

Theoretical work has captured these results using inhibition-stabilized networks
(ISN) [11]. These networks are defined by a strong recurrent excitation that is compensated
by inhibition such that if the latter is removed, the network becomes dynamically unstable.
ISNs exhibit oscillations where E and I populations fire out of phase. Conversely, if recurrent
excitation is weakened, the resulting non-ISNs exhibit in-phase oscillations between E
and I neurons [12,13]. Thus, alterations in the state of the network account for changes
in oscillatory activity [14–17]. Further, ISNs have successfully captured the response
of neural circuits to external stimulation [18,19] as well as damped gamma oscillations
(30–50 Hz range) [20–23].

However, in ISNs, the strength of connections between E and I populations is typically
hard-wired and fixed. This aspect of the model runs contrary to both experimental and
theoretical evidence suggesting that cortical networks can self-organize to an ISN state
through homeostatic plasticity (HP) [24]. According to HP, synaptic weights of E and I
neurons are adjusted to reach a target level of activity reflecting both the intrinsic activation
of the network and its response to peripheral stimuli [25].

In this work, we examined the contribution of HP to the control of oscillatory activity
in ISNs. Because HP is dependent upon the tonic levels of activity in the network, we
reasoned that altering the tonic activity of an ISN will alter its regime of activity [26].
Although theory suggests that modulating tonic activity can shift a network from a low to
a high state of activity [12], its impact on oscillations remains unclear.

We devised a model with excitatory and inhibitory populations described by canoni-
cal Wilson-Cowan equations where synaptic connections are subjected to HP. The ability
of the model to capture key effects observed in experiments was examined, including:
(i) a paradoxical decrease in inhibitory activity following the activation of inhibitory neu-
rons; (ii) an increase in the phase coupling of E and I neurons under inhibitory periodic
forcing; and (iii) damped gamma oscillations. Going further, we employed ISNs to repro-
duce an effect termed asynchronous quenching (AQ), in line with recent experimental work
on the interference between intrinsic oscillations and external inputs oscillating at similar
or dissimilar frequencies [27]. Overall, the control of dynamical states by HP broadens our
understanding of neuronal oscillations by showing how synaptic plasticity gives rise to
unique regimes of brain activity.

2. Materials and Methods
The Wilson-Cowan formalism allows for a coarse-grained description of neural activity

where a detailed characterization of individual neurons is replaced by the mean firing rate
of large E and I populations [16]. Despite its apparent simplicity, the model can simulate
rich dynamics across a variety of regimes [28]. Firing rates of the E and I populations
(Figure 1a) are described by

τ dRE
dt = −αRE + ϕ

(
JEERE + JEI RI + Iext + IE

osc +
√

τξ2ηE
)
,

τ dRI
dt = −αRI + ϕ

(
JI I RI + JIERE + Iext + I I

osc +
√

τξ2ηI
)
,

(1)

where RE and RI are the firing rates of E and I neurons, respectively. The function ϕ(·)
performs a linear rectification, ϕ(x) = x if x > 0, and ϕ(x) = 0 otherwise. This rectification
is intended for the model to be comparable to related work [24] and is employed as a
simplification of non-linear functions employed elsewhere [29]. Coupling strengths JXY

indicate weighted connections from node Y to node X. The leak parameter α = 0.5 controls
the decay rate of activity back to baseline levels. The terms

√
τξηE and

√
τξηI represent

independently drawn zero-mean Gaussian noise scaled by the integration time constant
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(τ = 10 ms) and variance (ξ2 = 0.05). The tonic activation Iext is shared across E and I
neurons and is constant over time. The terms IE

osc and I I
osc are external oscillations injected

into the E and I neurons, respectively, and remain at zero unless specifically noted in
numerical simulations.
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Figure 1. Mean-rate model of excitatory and inhibitory neurons exhibiting different dynamical
regimes. (a) Wilson-Cowan circuit where a population of excitatory (E) neurons is coupled with
inhibitory (I) neurons. Tonic activation is evenly applied to both populations. (b) The emergence of
different dynamical regimes depends on JEE and JEI . Weak self-excitation (JEE < 1) results in a stable
non-ISN regime, while stronger JEE yields either an ISN or unstable state.

The use of a linear rectification function captures properties of biological systems
where, in some instances, the activity of neurons is approximated by a linear response
over a certain range [30,31]. The use of saturating non-linearities becomes relevant when
a system operates in an unstable regime to prevent firing rates from increasing without
bounds. Within a stable regime, linear approximations of neural population dynamics are
common and include the use of linear response theory [32] as well as linear dimensionality
reduction techniques to describe network activity [33]. With the use of a linear rectification
function, only states with a positive activation (RE > 0 and RI > 0) are considered, which
aligns with neuronal systems where negative firing rates are implausible. The use of
non-saturating input-output functions has been studied in various contexts, including
supralinear networks [34]. While a neuron’s firing rate will ultimately saturate, cortical
neurons exhibit unsaturated responses over a broad range of activity [35].

In this model, different regimes of activity can be obtained by altering the strength
of excitatory and inhibitory connections feeding into the E population (JEE and JEI , re-
spectively), keeping other connections fixed. While evidence suggests that all synaptic
connections within this canonical circuit are subject to plasticity, we restricted plasticity
to JEE and JEI for two reasons. First, it provides a straightforward interpretation for the
modulation of ISN and non-ISN regimes [36]. Indeed, by manipulating the values of JEE

and JEI , one can cover a variety of regimes spanning ISN, non-ISN, and unstable states
(Figure 1b). Second, while plasticity may be possible at all synapses, this does not mean
that it is continuously applied everywhere within biological networks. In fact, experimental
evidence suggests the presence of pathway-specific plasticity, where only select connec-
tions are subject to alterations in connection strength while others remain fixed [37,38]. It
is, therefore, appropriate to consider how pathway-specific plasticity influences network
dynamics in a modeled circuit.
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3. Results
3.1. Steady State Analysis

The behavior of the proposed model can be studied by finding the steady state of
Equation (1) (i.e., dRX

dt = 0), focusing on the positive part of the linear rectifying function.
Assuming stable connection weights and the absence of noise, the fixed points of the model
are provided by

R∗
E =

JEI R∗
I +Iext

α−JEE
,

R∗
I =

JIER∗
E+Iext

α−JI I
.

(2)

To examine synaptic weights leading to negative real eigenvalues, we considered the
Jacobian matrix

G(R) =

[
∂FE
∂RE

∂FE
∂RI

∂FI
∂RE

∂FI
∂RI

]
, (3)

where FE = dRE
dt and FI =

dRI
dt . The eigenvalues of G(R) are determined by

λ(R) =
tr(G(R))±

√
tr(G(R))

2 − 4det(G(R))

2
, (4)

given tr(G(R)) = (JEE − α) + (JI I − α) and

det(G(R)) = (JEE − α) + (JI I − α)− JEI JIE. (5)

Negative real eigenvalues require that tr(G(R)) < 0 and det(G(R)) > 0. Rewriting the
determinant explicitly,

(JEE − α) + (JI I − α) > JEI JIE. (6)

For small values of JEE − α, the above condition implies that JEI JIE must also be propor-
tionally small to maintain a positive determinant. A more explicit bound is therefore

JEI JIE < min
((

JEE − α
)(

α − JI I
)
,
(
α − JEE

)(
α − JI I

))
, (7)

which accounts for interactions between JEE, JI I , JEI , and JIE. Solutions exist for weights
that respect the above stability condition and can be employed in numerical simulations
for both ISNs (JEE = 1.5, JEI = −1.2, JIE = 0.5, JI I = −0.05) and non-ISNs (same parameters,
but lowering self-excitation to JEE = 0.5).

Different regimes of activity based on JEI and JEE are shown in Figure 1b. With weak
excitation (JEE < 1), the model is in a non-ISN state where inhibition is not required
to achieve dynamical stability. With intermediate values of excitation (1 < JEE < 3),
dynamical stability is possible but requires the presence of inhibition, thus forming an
ISN regime. When excitation is too strong (JEE > 3), activity becomes unstable regardless
of inhibition. Thus, a simplified Wilson-Cowan model with E and I populations and
pathway-specific alterations in coupling strength exhibits a variety of dynamical regimes.

3.2. Relation Between ISN and Entropy

The ISN and non-ISN states can be interpreted as states of low and high entropy,
respectively. To examine the relation between stable points of activity and entropy, the
network is linearized around the steady-state solution. Small deviations (δ) from the
steady-state values are defined as

δRE = RE − R∗
E,

δRI = RI − R∗
I .

(8)
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Next, the Wilson-Cowan equations are linearized using a first-order Taylor expansion,

τ
d(δRE)

dt = −αδRE + ϕ′ (JEER∗
E + JEI R∗

I + Iext)δRE + ϕ′ (JEI R∗
I + Iext)δRI ,

τ
d(δRI)

dt = −αδRI + ϕ′ (JI I R∗
I + JIER∗

E + Iext)δRI + ϕ′ (JIER∗
E + Iext)δRE,

(9)

where ϕ′ (x) is the derivative of the activation function evaluated at the steady-state values.
The resulting linear system can be written as

d
dt

(
δRE

δRI

)
=

1
τ

(
−α + ϕ′

(
JEER∗

E + JEI R∗
I + Iext

)
ϕ′
(

JEI R∗
I + Iext

)
ϕ′
(

JIER∗
E + Iext

)
−α + ϕ′

(
JI I R∗

I + JIER∗
E + Iext

))(δRE

δRI

)
. (10)

The Jacobian of this linearized system is

G(δR) =

(
−α + ϕ′ (JEER∗

E + JEI R∗
I + Iext) ϕ′ (JEI R∗

I + Iext)

ϕ′ (JIER∗
E + Iext) −α + ϕ′ (JI I R∗

I + JIER∗
E + Iext)

)
. (11)

The Kolmogorov-Sinai entropy of this system is linked to the Lyapunov exponents, which
are approximated by eigenvalues of the Jacobian at the linear fixed points. Denoting the
eigenvalues of G(δR) by λ

(δR)
i , the entropy S is related to the sum of these eigenvalues,

S ≈ ∑
i

λ
(δR)
i . (12)

In a stable system, where both eigenvalues have negative real parts, this simplifies to

S ≈ −tr(G(δR)), (13)

where tr(G(δR)) = λ
(δR)
1 + λ

(δR)
2 . Eigenvalues of the Jacobian are obtained by solving

det(G(δR) − λI) = 0, (14)

where I is the identity matrix. The trace of the Jacobian is given by

tr(G(δR)) =
∂FE
∂RE

+
∂FI
∂RI

, (15)

where
∂FE
∂RE

= 1
τ (−α + JEEϕ′ (xE)),

∂FI
∂RI

= 1
τ (−α + JI Iϕ′ (xI)),

(16)

with xE = JEER*
E + JEI R*

I + Iext and xI = JI I R*
I + JIER*

E + Iext. Thus, the trace of the
Jacobian can be expressed as

tr(G(δR)) =
1
τ

[
−2α + JEEϕ′ (xE) + JI Iϕ

′(xI)
]
. (17)

Assuming that ϕ′(x) is nonzero for both neurons, tr(G(δR)) directly depends on JEE and as
such, the entropy is approximately proportional to the negative trace of the Jacobian,

S ≈ 1
τ
[2α − JEEϕ′ (xE)− JI Iϕ

′ (xI)]. (18)

Hence, entropy decreases when JEE increases (while remaining within a stable state),
moving the system from a non-ISN to an ISN state. Intuitively, a low JEE results in random-
like patterns of activity where neurons behave largely independently. Increasing JEE creates
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neuronal correlations that decrease the system’s entropy, thus showing a link between
stable network states and entropy.

3.3. Homeostatic Plasticity

To examine the extent to which HP can modulate the state of a network towards or
away from an ISN regime, we examined a classic HP formulation where the strength of E
and I connections was updated as follows [24],

∆JEE = ηRE(Eset − RE),
∆JEI = −ηRI(Eset − RE),

(19)

where η = 0.01 is a fixed learning rate, and Eset is a predetermined set point. This set point
represents the target level of neural activity that the system attempts to maintain through
synaptic adjustments.

To examine the behavior of the HP rule, we employed a separation of timescales. This
analysis assumes that neural activity evolves much faster than synaptic weights. This is
a reasonable assumption given that neural activity fluctuates on a millisecond timescale
while HP evolves over the course of hours [39]. The difference in timescales between neural
activity and synaptic weights is thus greater than six orders of magnitude. Therefore,
we consider that once HP has reached a stable state, changes in neural activity do not
immediately affect synaptic weights. In other words, we focus on the dynamics of neural
activity while assuming a fixed strength of connections. Nonetheless, to acknowledge
that both activity and weights evolve synergistically, this analysis is termed a quasi-steady
state (QSS) approximation [24], such that the stable points of neural activity are referred to
as “quasi-stable” and not as “stable” in the traditional sense. To avoid excessive wording,
quasi-stable states are herein referred to as stable states.

An overview of the approach is as follows. First, following QSS, firing rates are
assumed to reach an instantaneous steady state after weight modification. Hence, for a
given set of weights, we calculated the steady state of neural activity (Equation (2)). Second,
we found the steady state solution of the synaptic plasticity subsystem (Equation (19))
after substituting the steady state of neural activity. Finally, we performed a linear stability
analysis of this subsystem. If both eigenvalues have negative real parts, then the system
was classified as stable under the HP learning rule. These steps constitute a well-studied
approach that has been validated in mean-rate models with HP rules [24].

Following QSS, the steady state of activity is substituted into Equation (19),

∆JEE = ηR∗
E(Eset − R∗

E),
∆JEI = −ηR∗

I (Eset − R∗
E).

(20)

Substituting the fixed points of neural activity into the HP learning rule,

∆JEE = η
(

JEI R∗
I +Iext

JEE−α

)(
Eset −

JEI R∗
I +Iext

JEE−α

)
,

∆JEI = −η
(

JIER∗
I +Iext

JI I−α

)(
Eset −

JEI R∗
I +Iext

JEE−α

)
.

(21)

Next, the fixed points of Equation (21) are obtained as

J∗EE = α − JEI R∗
I +Iext

Eset
,

J∗EI =
Eset(α−JEE)−Iext

R∗
E

.
(22)

We see from Equation (22) that the fixed points J∗EE and J∗EI depend on both the set point of
the HP rule (Eset) and the tonic activation of the network (Iext). To check for consistency,
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we can substitute the fixed points of firing rates R∗
E (Equation (2)) into the fixed points

of weight J∗EE, which after simplification helds J∗EE = JEE. A similar exercise where we
substitute R∗

I into the solution for J∗EI yields J∗EI = JEI when assuming a steady state
where R∗

I = RI .
A further verification is to ensure that J∗EE and J∗EI do not generate unstable firing rates

when substituted into R∗
E and R∗

I . The stability of the eigenvalues (Equation (4)) requires
that tr(G(R)) < 0 and det(G(R)) > 0, as described earlier. These constraints can be verified
numerically to ensure that solutions for J∗EE and J∗EI lead to stable firing rates.

The stability of the HP rule itself (Equation (19)) is determined by the eigenvalues of
the Jacobian matrix,

G(J) =

[
∂DE
∂JEE

∂DE
∂JEI

∂DI
∂JEE

∂DI
∂JEI

]
, (23)

where DE = ∆JEE and DI = ∆JEI , with elements

∂DE
∂JEE

=
η(JEIR*

I+Iext)
(α−JEE)

2 (2R*
E − Eset),

∂DE
∂JEI

=
ηR*

I
α−JEE

(Eset − 2R*
E),

∂DI
∂JEE

= η
(R*

I)
2

(α−JEE)
2 ,

∂DI
∂JEI

= η
(R*

I)
2

α−JEE
.

(24)

Eigenvalues of G(J) are given by

λ(J) =

−η
R∗

ER∗
I

(α−JEE)
2 ±

√(
η

R∗
ER∗

I
(α−JEE)

2

)2
− 4η2 (R∗

E)
3
R∗

I +R∗
E(R∗

I )
3

(α−JEE)
4

2
. (25)

We define acceptable solutions of the Wilson-Cowan model with HP as regions of
parameter space in the synaptic weights JXX where three conditions are met. First, to
respect Dale’s law, we ensure that JEE > 0 and JEI < 0, thus restricting neurons to remain
either excitatory or inhibitory, as this has key implications for signal processing in neural
networks [18,40]. Second, the eigenvalues of activity must be negative (Equation (4)). Third,
the eigenvalues of the synaptic weights must be negative (Equation (25)). With these three
conditions, the resulting weights must follow Dale’s law, the activity of the model must be
stable, and the weight values themselves must form stable points.

Fixed points of the HP rule (J∗EE and J∗EI , Equation (22)) are shown in Figure 2a,b
across a range of tonic activations (Iext) and set points (Eset). The dashed lines in this
figure delineate a region of parameter space where synaptic weights correspond to ISN
and non-ISN regimes (Figure 1b). Within this region, we identified points (black and white
circles) corresponding to instances of weights that fall within the ISN and non-ISN regimes.
These points were found by taking the weight values for J∗EE and J∗EI and mapping them to
Figure 1b, where these values were linked to the different dynamical regimes. A numerical
example showing synaptic weights that gradually settle to a steady state ISN regime under
the control of HP is shown in Figure 2c. Values of Eset and Iext for this example are taken
from Figure 2a,b (white circle). Within ~100 iterations, weights alter their initial values to
settle into a stable state that matches the steady state solution (dashed lines).

Previous theoretical work has shown that a standard HP rule (Equation (19)) cannot
yield a stable ISN regime [24]. However, this work did not consider the role of tonic
activation (Iext). If we consider the stable points J∗EE and J∗EI for a tonic activation of zero,
we find that the solution does not respect Dale’s law and does not admit an ISN regime
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(Figure 2a,b, at Iext = 0). Hence, our model is consistent with previous results and further
shows that non-zero tonic activation is required to attain an ISN state.
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The ISN and non-ISN solutions identified in Figure 2a,b show that one can switch
from these two regimes by keeping Eset constant and simply altering tonic activation (Iext).
This is observed by the white dot (ISN) being stacked atop the black dot (non-ISN). In this
way, a weak level of Iext gives rise to an ISN regime while a stronger negative value yields
a non-ISN regime (note that it is also possible to obtain a non-ISN regime with Iext close to
zero, but this state is not explored here). These results open the door to modulating the
behavior of the network by controlling its tonic activation, an idea that will be exploited
below to alter neural responses and oscillations.

3.4. Emergence of a Paradoxical Response

As a starting point, we tested whether the proposed model could capture a well-known
feature of the ISN regime reported in experiments. When selectively increasing the drive of
inhibitory neurons, ISNs exhibit a paradoxical decrease in their firing rate [11,19]. This effect
has been captured by theoretical models where synaptic weights are hard-wired [13,36,40].

In a simplified version of the model where HP was omitted, this result was replicated
by simply setting the weights to an ISN regime as mapped out in Figure 1b (JEE = 1.5,
JEI = −2). In this scenario, external activation of the I population resulted in a decrease
in inhibitory activity (Figure 3a). This effect occurs because stimulating the I popula-
tion inhibits the E population, which in turn down-regulates the I population through
feedforward excitation. Conversely, when weights were set to a non-ISN state (JEE = 0.5,
JEI = −2), stimulating the I population yielded an increase in its activity. Thus, activating
the inhibitory population yielded opposite effects in ISN and non-ISN states, recapitulating
past experimental and theoretical findings [11,13,19,41–46].

To incorporate HP in the above simulations, we employed combinations of set point
(Eset) and tonic activation (Iext) that gave rise to an ISN or non-ISN regime. As mapped in
Figure 2a,b, weaker tonic activation was employed to generate an ISN regime, and stronger
tonic activation for a non-ISN regime (Figure 3b). The resulting values of J∗EE and J∗EI were
then employed in numerical simulations of neural activity (Equation (1)).

With weak tonic activation, the network self-organized to an ISN state, yielding a
paradoxical response to inhibitory stimulation (Figure 3c, top). Conversely, with a strong
negative tonic activation, the network settled to a non-ISN state that did not exhibit a
paradoxical response (Figure 3c, bottom). Thus, tonic activation was a determining factor
in the regime of activity attained by HP. By modulating the strength of tonic activation, the
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network could occupy either an ISN regime characterized by a paradoxical response or a
non-ISN regime where this response did not emerge.
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captures the well-known paradoxical response observed in ISNs (a). With HP, the strength of
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To further examine the response of ISN and non-ISN regimes to inhibitory stimulation,
we computed the change in firing rate (∆ rate) between the pre-stimulation steady state
activity and the steady state obtained during stimulation. Positive values of ∆ rates denote
a decrease in the activity of the I population caused by stimulation, thus indicative of a
paradoxical response. Positive values of ∆ rate were concentrated near the border between
ISN and unstable states, showing that paradoxical responses are characterized as an edge-
of-stability effect [36] (Figure 3d). Formally, the change in inhibitory firing rate relative to
an external input is termed the “gain” of inhibition,
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=
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and can be expressed as a Laurent series as JI I goes to infinity,
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with a limit of

lim
JII→∞

dR∗
I

dIext
= 0. (28)

Thus, strong recurrent inhibition serves to stabilize firing rates in response to an
external input. Intuitively, the implication of this result in terms of the model’s dynamics
can be examined by re-writing the steady-state of inhibitory activity (Equation (2)) as

R∗
I =

ϕ(JI I R∗
I + JIER∗

E + Iext)

α
, (29)

by assuming that the input to the inhibitory neuron is passed through the linear rectification
ϕ(·). In this case, as the self-inhibitory weight (JI I) increases, the rectification function
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becomes increasingly dominated by the self-feedback term JI I R∗
I , so that further changes in

Iext have a negligible influence on the value of R∗
I .

In sum, an ISN regime near the edge of stability promotes the emergence of a paradoxical
response where a stimulation applied to inhibitory neurons yields a decrease in their activity.

3.5. Phase Offset Induced by a Forced Oscillator

Next, we examined the response of the model to a periodic input by delivering a
forced oscillation (5 Hz) to the I population [22]. With strong tonic activation, the network
settled to a non-ISN state, as described earlier. In this state, the phase of the E population
preceded the I population, resulting in out-of-phase activity (Figure 4a). By weakening
tonic activation, however, the regime shifted to an ISN state where E and I populations
fired in phase. These results capture and extend previous theoretical work where synaptic
weights were hard-wired to an ISN or non-ISN regime [12,13]. In our model, HP allows
weights to self-organize to a particular regime based on the level of tonic activation of the
network. Thus, the model provides a simple, yet biologically plausible means of controlling
the regime of the network, and hence the phase of synchronization between E and I.
In the brain, alterations in tonic activation could be employed as a neuronal “switch” to
gate signal propagation from external inputs to different regions of broadly distributed
synaptic circuits.
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Figure 4. Phase offset between E and I populations in response to an external input. With a forced
external oscillator, a tonic activation applied to I cells results in a large phase offset in a non-ISN
state and a small offset in an ISN state (a). The phase offset (∆ phase) between E and I populations
depends on the strength of excitatory and inhibitory couplings, which collectively determine the state
of the network (b). Filled grey circle: non-ISN; filled black circle: ISN.

A further distinction between ISN and non-ISN states relates to the phase between the
forced oscillator and the two neural populations. In the non-ISN state, the E population was
tightly coupled with the oscillator, while in the ISN state both populations were decoupled
from the oscillator (Figure 4a). This result has implications for the ability of brain circuits to
route information, given that tightly coupled activity promotes the propagation of inputs
along neural pathways [8]. This effect was quantified by calculating the absolute phase
difference between E and I populations,

∆ phase = |H(RE)− H(RI)|, (30)

where H(·) is a Hilbert transform of neural activity, expressed in units of degree. The
reduction in phase lag in the ISN state was more prominent near the border of instability,
suggesting an edge-of-stability effect, though this effect was largely driven by changes in
recurrent excitation (JEE) (Figure 4b). As recurrent excitation increased and the network
state shifted towards instability, the phase difference between E and I populations gradually
decreased. In sum, numerical simulations captured and expanded past findings, showing
how the oscillatory phase of E and I populations can be modulated by the network state
under the control of synaptic plasticity.



Entropy 2025, 27, 215 11 of 16

3.6. Damped Oscillations

The Wilson-Cowan model with HP exhibited damped gamma oscillations in the ISN
state, where tonic activation was weak (Figure 5a,b). No oscillations were observed in the
non-ISN state, where tonic activation was stronger. In these numerical simulations, gamma
power (30–50 Hz) was modulated by the strength of recurrent excitation (JEE), with higher
gamma power obtained in an ISN state near instability (Figure 5c). This result provides
further evidence for an edge-of-stability effect associated with the ISN regime, as shown in
earlier results. The instantaneous phase offset between E and I populations increased as
recurrent excitation was strengthened (Figure 5d).
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Figure 5. Damped oscillations in the ISN state. Damped oscillations are present in the ISN but not in
the non-ISN regime (a), as shown by power spectra in both regimes (b). Mean gamma (30–50 Hz)
power (c) and phase offset (d) increase with stronger excitatory coupling. In panels (a–d), damped
oscillations were obtained by setting the decay rate of activity to α = 0.25. Weights were set to
JEE = 0.5 (non-ISN) JEE = 1.5 (ISN), JEI = −1.5, JIE = 1.5, JI I = −1.1.

Thus, damped gamma oscillations arose in the ISN state and increased in power near
an unstable regime dominated by recurrent excitation. By modulating tonic activation, HP
allowed the model to express either ISN or non-ISN regimes, providing a straightforward
biological mechanism for the control of gamma oscillations.

3.7. Asynchronous Quenching

The presence of gamma oscillations in ISNs opens the possibility of studying AQ, refer-
ring to the interference between an intrinsic oscillation and an external input oscillating at
a similar or different frequency. While the interference between oscillators has been studied
in a broad range of fields, AQ specifically refers to the abolishing effect of an external force
on an oscillation, which can be used to control various kinds of pathological or unwanted
oscillations [47]. Importantly, AQ is applicable to self-exciting oscillators and manifests as a
suppression of pre-existing oscillations. AQ is related to prior work on Arnold tongues that
examined the effects of an external stimulation on neural oscillations [48–50]. A key dis-
tinction, however, is that AQ focuses on self-sustaining oscillations that occur in nonlinear
oscillators, as opposed to weaker entrainment effects that are common in Arnold tongues.

Here, we examined the effect of an external oscillation on the mean activity of the
Wilson-Cowan model over time. Our starting point was an ISN that generated damped
gamma oscillations (Figure 5a). A forced external oscillation was injected into both the E and
I populations of this network (Figure 6a). When the frequency of the external signal closely
matched the frequency of the damped gamma oscillation (42 Hz), the network generated
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sustained gamma waves (Figure 6b, top). However, when the external oscillation was
higher in frequency, fluctuations decayed rapidly (Figure 6b, bottom). Hence, depending
on the frequency of the external oscillation, the model exhibited either a higher or lower
mean amplitude of activity (Figure 6c). Mean excitatory activity was highest when the
intrinsic and extrinsic oscillations were closely matched in frequency, and lower when the
intrinsic and extrinsic oscillations were detuned, reflecting a well-documented pattern of
responses in cortex [27]. Importantly, an external oscillation that is slightly detuned from
the intrinsic frequency can lead to a drastic reduction in mean amplitude, raising issues for
experiments and clinical applications aimed at reducing aberrant brain oscillations.
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Figure 6. Asynchronous quenching of damped gamma oscillations. An external oscillator (amplitude:
0.045) was injected into both E and I cells of an ISN that produced damped oscillations (a). When the
input matched the frequency of the damped oscillation, sustained activation was generated (top).
A mismatched frequency yielded damped oscillations that decayed rapidly (bottom) (b). Summary
of the effect of input frequency on the mean activity of E cells taken over a 500 ms window (c).

4. Discussion
Theoretical models of neuronal circuits have examined how different regimes of activ-

ity emerge from the interaction between coupled excitatory and inhibitory populations. In
these models, however, connectivity is usually hard-wired [13,36,41], unlike brain networks
where synaptic plasticity modulates neuronal interactions [51]. Here, we incorporated
HP in a Wilson-Cowan model with excitatory and inhibitory populations. Going beyond
previous work [24], we showed how HP shapes properties of neural oscillations, including
the relative phase of E and I populations and the power of gamma oscillations. Further,
we proposed a simple biological mechanism whereby tonic activation can shift the regime
of the network between ISN and non-ISN states. The model linked ISNs to entropy and
replicated key experimental findings on paradoxical responses when driving inhibitory
neurons, phase shifts under a forced oscillator, damped gamma oscillations, and asyn-
chronous quenching. These findings were dependent on the state of the network and
exhibited an edge-of-stability effect whereby they were strongly manifested near the border
of instability.

At first glance, these results seem to contradict recent theoretical work showing that
HP is unstable and hence cannot generate an ISN regime [24]. This past work, however,
did not consider the role of tonic activation. Our findings show that the tonic activation of
E and I populations is a determining factor in the solutions of the HP rule (Figure 2a,b),
and that altering the set point alone (Eset) cannot bring the network to an ISN state. By
adjusting the tonic activation and set point independently, one ends up with rules that are
either stable or unstable, as well as rules that either respect or violate Dale’s law. Hence,
our results help reconcile the contradiction between experimental findings that suggest
that ISN is the default state of cortex [11] and theoretical work that suggests that standard
HP rules are incompatible with an ISN regime.
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A further distinction between our work and related efforts is that we restricted plastic-
ity to two pathways—recurrent excitation and feedforward inhibition—while past models
have applied it to all connections. While all synapses may be subject to plasticity, this
does not imply that plasticity is applied continuously to all connections within biological
networks, which would be energetically costly. Rather, brain circuits exhibit pathway-
specific plasticity whereby synaptic changes are restricted to a subset of connections [38].
Our results show that applying plasticity to selected pathways captures a broad range of
experimental findings related to ISNs and non-ISNs while facilitating the mapping between
synaptic weights and dynamical states (Figure 1b). An important biological implication of
these findings is that transitioning from one state to another does not require reconfiguring
the synapses of an entire network.

Another implication of our findings concerns the control of neuronal activity in various
practical applications of brain stimulation [27]. Our theoretical results suggest that it may
be possible to alter the dynamical state of a network by selectively modulating its level
of tonic activation. By doing so, it may be possible to suppress pathological network
oscillations, for instance, by shifting the network from its default ISN state to a non-ISN
state by lowering its tonic activity (Figure 5a) or by presenting an oscillation that is detuned
from the intrinsically generated gamma activity (Figure 6b). This prospect is consistent
with work that identifies regions of parameter space within a model where neural activity
is susceptible to external control [48–50].

Substantial data suggests that AQ occurs in living brains. The strongest empirical
evidence comes from direct neural recordings made during transcranial alternating current
stimulation (tACS). This method is often thought to entrain neural activity, particularly
when the ongoing baseline activity is unstructured [52,53]. However, when neurons are
participating in a neural oscillation, applying tACS at a mismatched frequency instead
desynchronizes them, a hallmark of AQ [24]. Similar hints of AQ can be found in the
paradoxical results of other experiments as well: subtle visual flicker can cause event-
related desynchronization [54], 40 Hz tone pips suppress 30 Hz gamma oscillations in
auditory cortex [55], and rhythmic somatosensory stimulation disrupts ongoing alpha and
beta oscillations in the primary somatosensory cortex [56].

This offers a straightforward alternative to existing closed-loop systems that continu-
ally monitor brain activity and apply counter-phased stimulation to destructively interfere
with it. Although the responsive approach has had some success in invasive neuromod-
ulation, it requires a complex apparatus that can accurately record neural activity while
performing real-time signal processing, artifact rejection, and stimulus synthesis. These
operations are particularly challenging for non-invasive methods, as the control signals
(e.g., electroencephalograms) are noisy, especially during real-world use. In contrast, AQ
exploits the brain’s ongoing dynamics to suppress oscillations and can, therefore, rely
on less frequent measures and weaker stimulation. Models such as the one described
here can help identify the requisite parameters and develop AQ into a robust therapeutic
intervention [57].

At the same time, AQ may be an underappreciated factor in the (ir)reproducibility
of many brain stimulation experiments [57]. Most use the same stimulation parameters
for all participants, but brain oscillations vary between individuals and even within an
individual over the course of an experiment. These fixed parameters may entrain neural
activity in some subjects (or trials) while engaging AQ in others, leading to conflicting
results. Achieving consistent results, especially in studies of neurological and psychiatric
conditions where brain oscillations vary dramatically, may require more precisely targeted
neuromodulation. AQ is thus both a serious confound and an exciting future direction for
neuromodulation.
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While our work focused on the role of HP in modulating dynamical regimes of activity
across populations of neurons, there are several additional roles of HP that have not been
considered here, including synaptic scaling [25], regulating neural activity [39], and guiding
the development of neural circuits [58]. Hence, HP is a versatile learning rule that serves a
variety of functions within both developing and mature neuronal circuits. The contribution
of our work is to shed light on one aspect of HP, namely the ability to shape dynamical
regimes to control the behavior of neuronal circuits.

To be sure, other synaptic rules influence network states, including Hebbian and other
forms of plasticity [59]. Here, we focused on HP as a proof-of-concept that recurrent net-
works can self-organize to different dynamical regimes through pathway-specific plasticity
by controlling their level of tonic activation. This mechanism constitutes a powerful means
by which biological networks may modulate their activity and propagate information
across broadly distributed circuits of the brain.
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